

B.Sc. (Hons.) Mathematics (2016-17)*

(*Modified course structure as per the approval of BoS and AC).

Course Structure				
Semester- I	Semester- II	Semester-III		
Semester- IV	Semester- V	Semester- VI		

Department of Mathematics Faculty of Natural Sciences Jamia Millia Islamia, New Delhi-110 025

	COURSE STRUCTURE				
	Semester – I				
Paper Code	Title of the Paper	Credit	IA	UE	MM
BHM-111	Calculus	4	40	60	100
BHM-112	Analytical Geometry	4	40	60	100
BHM-113 (GE-1) *#	C1. Set Theory and Number Theory				
	C2. Computer Fundamentals	4	40	60	100
	C3. (CBCS paper from another department)		1.0		100
BHM-114 (AE-1)	English/MIL Communication	4	40	60	100
DIII / 211	Semester – II	4	40	60	100
BHM-211	<u>Differential Equations</u>	4	40	60	100
BHM-212	Statistical Techniques	4	40	60	100
BHM-213 (GE-2) *#	C1. Programming in C (P)	4	40	60	100
	C2. Econometrics C3. (CPCS paper from another department)	4	40	60	100
BHM-214 (AE-2)	C3. (CBCS paper from another department) English/MIL Communication	4	40	60	100
DIIW-214 (AL-2)	Semester – III	4	40	00	100
BHM-311	PDE and System of ODE	4	40	60	100
BHM-312	Numerical Methods	4	40	60	100
BHM-313	Group Theory	4	40	60	100
BHM-314 (GE-3) *#	C1. Information Security	7	70	00	100
DIIWI-314 (GE-3)	C2. OOPs in C++ (P)	4	40	60	100
	C3. (CBCS paper from another department)	•		00	100
BHM-315 (SE-1) *#	C1. Latex & Web Designing		1.0		
	C2. Computer Graphics	4	40	60	100
	Semester – IV				
BHM-411	Real Analysis	4	40	60	100
BHM-412	Ring Theory	4	40	60	100
BHM-413	Linear Programming	4	40	60	100
BHM-414 (GE-4)*#%	C1. Mathematical Modelling				
	C2. <u>Data Structures (P)</u>	4	40	60	100
	C3. (CBCS paper from another department)				
BHM-415 (SE-2) *#	C1. Graph Theory	4	40	60	100
	C2. <u>Fuzzy Sets and Logics</u>	7	40	00	100
	Semester – V				
BHM-511	Riemann Integration and Series of Functions	4	40	60	100
BHM-512	Multivariate Calculus	4	40	60	100
BHM-513	Metric Spaces	4	40	60	100
BHM-514	Linear Algebra	4	40	60	100
BHM-515 (DS-1)*#	C1. Modelling and Simulation	4	40	60	100
DVI 5 51 5 (D G G) *#	C2. <u>Discrete Mathematics</u>	-		-	
BHM-516 (DS-2) *#	C1. Mathematical Finance	4	40	60	100
	C2. <u>Dynamical Systems</u>				
DIII ((11	Semester – VI	4	40	<i>c</i> 0	100
BHM-611	Integral Equations and Calculus of Variations	4	40	60	100
BHM-612	Complex Analysis	4	40	60	100
BHM-613	Differential Geometry Machanics	4	40	60	100
BHM-614 BHM-615 (DS-3)*#	Mechanics C1 People Algebra and Automata Theory	4	40	60	100
DUM-012 (D2-3)	C1. <u>Boolean Algebra and Automata Theory</u> C2. Bio-Mathematics	4	40	60	100
BHM-616 (DS-4) *#	C1. Industrial Mathematics				
DITIVI-010 (DS-4)	C2. Applications of Algebra	4	40	60	100
	C2. Applications of Aigeora				

GE- Generic Elective, AE- Ability Enhancement, SE- Skill Enhancement, DS- Discipline Specific.

IA-Internal Assessment, UE-University Examination (End Semester)

Students may choose a CBCS paper from another department with effect from session 2022-23 in generic elective (GE) bearing code BHM-113, BHM-213, BHM-314 and BHM-414. However, actual paper code will be allocated by the concern department (if opted from another department). These additional options were approved in BoS.

^{*}Choose any one from C1, C2 and C3,

^{*}Subject to the availability of teacher,

[%]Prerequisite for BHM-414 (GE-4) C2 is BHM-213 (GE-2) C1.

B.Sc. (Hons.) Mathematics Semester – I Syllabus				
Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-111	Calculus	4L	40	60
T 124 T	Limit and Continuity by	S amma a ala Diffamanti ala	11:4 Cyranasiyya	differentiation

Unit-I Limit and Continuity by $\varepsilon - \delta$ approach, Differentiability, Successive differentiation, Leibnitz Theorem, Rolle's Theorem, Mean Value Theorems, Taylor and Maclaurin series.

- **Unit-II** Indeterminate forms, Curvature, Cartesian, Polar and parametric formulae for radius of curvature, Partial derivatives, Euler's theorem on homogeneous functions.
- **Unit-III** Asymptotes, Test of concavity and convexity, Points of Inflexion, Multiple points, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves.
- **Unit-IV** Derivations and illustrations of reduction formulae of the various types. Volumes by slicing; disks and washers methods, volumes by cylindrical shells, parametric equations, arc length, arc length of parametric curves, surfaces of solids of revolution.

Books Recommended

- 1. G.B. Thomas and R.L. Finney: Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 2. M.J. Strauss, G.L. Bradley and K. J. Smith: Calculus, 3rd Ed., Dorling Kindersley, India. (Pearson Education), 2007.
- 3. H. Anton, I. Bivens and S. Davis: Calculus, 7th Ed., John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- 4. Gorakh Prasad: Differential Calculus, Seventeenth Edition, Reprint 2007
- 5. Khalil Ahmad: Text Book of Calculus, World Education Publishers, 2012.

Code BHM-112	Title of Paper Analytical Geometry	Period per week 4L	Internal Assessment 40	Semester Examination 60
Unit-I	General equation of second degree, Pair of and their properties, Ellipse, Hyperbola diameters.	of lines, Parabol	, ,	al, Pole and Polar
Unit-II	Asymptotes, Conjugate hyperbola and R Polar equation of tangent, normal, polar hyperbola.			
Unit-III	Review of straight lines and planes, Equand polar plane, Intersection of two spherone, Intersection of cone with a plane and	eres, radical pla	ne, Coaxial sphere	es, Equation of a

Unit-IV Equation of cylinder, Enveloping and right circular cylinders, Equations of central conicoids, Tangent plane, Normal, Plane of contact and polar plane, Enveloping cone and enveloping cylinder, Equations of paraboloids and its simple properties.

- 1. Ram Ballabh: Textbook of Coordinate Geometry, Prakashan Kendra.
- 2. S. L. Loney: *The elements of Coordinate Geometry*, Michigan Historical Reprint Series.
- 3. P.K. Jain and Khalil Ahmad: Textbook of Analytical Geometry, New Age International (P) Ltd. Publishers, 1986.
- 4. R. J. T. Bell: Elementary Treatise on Coordinate Geometry of Three Dimensions, Macmillan India Ltd., 1994.
- 5. E. H. Askwith: A Course of Pure Geometry, Merchant Books, 2007.

1				
Set Theory and Number Theory	week 4L	Assessment 40	Examination 60	
1 1		*		
· •		•	ties in cardinals,	
Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruencies, complete set of residues, Algebraic congruencies Chinese Remainder theorem, Fermat's Little theorem, Lagrange theorem,				
definition and properties of the Dirichlet greatest integer function, Euler's phi-fur	t product, the Naction, Euler's	Mobius Inversion for	ormula, the	
primitive roots, Euler's criterion, the	Legendre sy	mbol and its prop		
	Cartesian products of sets, equivalence requivalence relation, equivalent set, cour Cardinal numbers, power of continuous Schoeder-Bernstein theorem, partially at Linear Diophantine equation, prime cour theorem, Goldbach conjecture, linear concongruencies Chinese Remainder theorem Wilson's theorem. Number theoretic functions, sum and number theoretic functions, sum and number theoretic function, Euler's phi-function. Order of an integer modulo n, primiting primitive roots, Euler's criterion, the	Cartesian products of sets, equivalence relations and particular equivalence relation, equivalent set, countable sets and Cardinal numbers, power of continuum, cardinal and Schoeder-Bernstein theorem, partially and totally orded Linear Diophantine equation, prime counting function, theorem, Goldbach conjecture, linear congruencies, congruencies Chinese Remainder theorem, Fermat's Linear Wilson's theorem. Number theoretic functions, sum and number of divisor definition and properties of the Dirichlet product, the Mingreatest integer function, Euler's phi-function, Euler's some properties of Euler's phi-function. Order of an integer modulo n, primitive roots for primitive roots, Euler's criterion, the Legendre syntage.	Cartesian products of sets, equivalence relations and partition, fundament equivalence relation, equivalent set, countable sets and uncountable sets, Cardinal numbers, power of continuum, cardinal arithmetic, inequali Schoeder-Bernstein theorem, partially and totally ordered sets Linear Diophantine equation, prime counting function, statement of prime theorem, Goldbach conjecture, linear congruencies, complete set of reside congruencies Chinese Remainder theorem, Fermat's Little theorem, Lagr Wilson's theorem. Number theoretic functions, sum and number of divisors, totally multiplied definition and properties of the Dirichlet product, the Mobius Inversion for greatest integer function, Euler's phi-function, Euler's theorem, reduced sets	

Period per

Internal

Semester

Books Recommended:

Code

- 1. David M. Burton: *Elementary Number Theory*, 6th Ed., Tata McGraw-Hill, Indian reprint, 2007.
- 2. Neville Robinns: *Beginning Number Theory, 2nd Ed.*, Narosa Publishing House Pvt. Ltd., Delhi, 2007.
- 3. Seymour Lipschutz: Set Theory and related topics. McGraw-Hill Education; 2nd edition, 1998.
- 4. J. Hunter: Number Theory, Oliver & Boyd, Edinburgh and London, 1964.

Title of Paper

Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-113	Computer Fundamentals	4L	40	60
	Computer 1 unuamentais	710	40	O O
(GE-1) C2				6.6
Unit-I	Introduction to Computers, Characteri			
	Block Diagram of a Computer, Function	ns of the Differe	ent Units - Input	unit, Output unit,
	Memory unit, CPU (Control Unit, AL	U). Data vs In	formation, Hardw	vare vs Software,
	flowcharts, algorithms.	,		
Unit-II	Number Systems: Introduction, Types	of Number	System: Binary,	Octal, Decimal,
	Hexadecimal, Conversions from On	e Base to A	nother, r's com	plement, (r-1)'s
	complement, Addition and Subtraction		·	
	coded Decimals (BCD), Gray Code.	operations in		system, Binary
Unit-III	Input Devices: Keyboard, Point and dra	ovy dovices me	usa javetjale traa	ok hall light nane
UIIII-III	•			
	Data Scanning devices-image scanner,			
	Output Devices: Monitor, Printers: laser	-		
	of Memories: Registers, Cache Memor	ry, Primary Sto	orage, Secondary	Storage. Primary
	Memory: RAM, ROM and types. Second	ondary Memori	es: Floppy drive,	CD/DVD, Flash
	drive, Hard disk, Structure of a hard disk	k, concept of tra	icks, sectors, cylin	iders.
Unit-IV	Classifications of Software: System Soft	tware, Applicati	ion Software, Emb	pedded Softwares
	etc Programming languages- Mach	ine language,	Assembly langu	age, High level
	language, types of high level language	s, Translators -	- Compiler, Inter	preter. Operating
	System, Functions of Operating System	n, Types of Or	perating Systems.	Introduction to
	Computer Networks, Internet and World			
D 1 D	1 1		, =1000101110 111u1	

- 1. P. K. Sinha and Priti Sinha: Computer Fundamentals, BPB, 2007.
- 2. V. Rajaraman and N.Adabala: Fundamentals of Computers, 6th Revised Edition, PHI, 2014.
- 3. E. Balagurusamy: Fundamentals of Computers, McGraw Hill Education, 2009.
- 4. Anita Goel: Computer Fundamentals, Pearson Education, 2010.

Paper Code	Title of the Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-113	CBCS paper	4L	40	60
(GE-1) C3	ebes paper			

(From another Department)

Paper Code	Title of the Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-114	English/MIL Communication	4L	40	60
(AE-1)	English/WIIL Communication			

(From Department of English)

		Mathamatica			
	B.Sc. (Hons.)				
	Semester – II Syllabus				
Code	Title of Paper	Period per	Internal	Semester	
Code	Thic of Laper	-			
RHM 211	Differential Equations				
	•				
Unit-1	±		•	-	
	1		•		
		-		equations, Exact	
	differential equations, integrating factor	rs, Change of va	riables.		
Unit-II	Equations of the first order and higher	degree, Equatio	ns solvable for p ,	y and x, Clairaut	
	equation, Lagrange's equation, Trajecto	ories.			
Unit-III	Linear differential equations with co	onstant coefficie	ent, Complementa	ary function and	
	particular integral. Particular integral	of the forms e	ax . $\sin ax$. $\cos ax$	x . x^m and $e^{ax}V$.	
			,,	, , ,	
Unit-IV		nd order Comr	olete solution in	terms of known	
CIIIC I V	•				
	integral belonging to the complementary function, Normal form, Change of independent				
	variable, Method of undetermined of	coefficients, Me	thod of variation	of parameters,	
	Simultaneous equations with constant of	coefficients, Sim	ultaneous equation	ns of form	
	a	lx dy dz			
		$\frac{1}{P} = \frac{1}{O} = \frac{1}{R}$.			
BHM-211 Unit-I Unit-II	Differential Equations Formulation of differential equations equations of first order and first degres separable, Homogeneous equations, differential equations, integrating factor Equations of the first order and higher equation, Lagrange's equation, Trajector Linear differential equations with comparticular integral. Particular integral Homogeneous linear equations. Linear differential equations of second integral belonging to the complementar variable, Method of undetermined of Simultaneous equations with constant of the complementary integral belonging to the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary integral belonging to the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary integral belonging to the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary variable, Method of undetermined of Simultaneous equations with constant of the complementary variable, Method of undetermined of the complementary variable o	week 4L s, Order and desce, solutions of Linear equations of the gree, Equations of the forms end order, Compary function, Noteoefficients, Me	Assessment 40 egree of a differ equations in whose and Bernoulli riables. In solvable for p, ent, Complementa ax, sin ax, cos ax olete solution in rmal form, Change thod of variation	Examination 60 erential equations ich variables are equations, Exactly and x , Clairautary function and x , x^m and $e^{ax}V$ terms of known of parameters	

- 1. C. H. Edwards and D. E. Penny: *Differential Equations and Boundary Value Problems: Computing and Modelling*, Pearson education, India 2005.
- 2. Dennis G. Zill: A First Course in Differential Equations with Modeling Applications, Cengage Learning; 10 edition, 2012.
- 3. S. L. Ross: Differential equations, John Wiley and Sons, 2004.
- 4. Zafar Ahsan: Textbook of Differential Equations and their Applications, Prentice Hall of India, 2004.
- 5. Khalil Ahmad: Textbook of Differential Equations, World Education Publishers, 2012.

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination
BHM-212	Statistical Techniques	4L	40	60
Unit-I	Probability: Basic concepts and de conditional probability, basic laws of t theorem, Prior probabilities (priori) and	total probability	and compound pr	, ,
Unit-II	Discrete and continuous random variables, mathematical expectation, variance, moment about a point, central moment, moment generating function. Various discrete and continuous probability distributions: Uniform (continuous and discrete), Binomial, Negative Binomial, Poisson, Exponential, Normal and Rectangular distributions.			
Unit-III	Two-dimensional random variables, judicional covariance, linear regression and confitting regression lines.			
Unit-IV	Statistical Testing and Estimation unbiasedness, Minimum variance unbiasedness (Confidence Intervals for mean, variance proportion, chi square test for goodness)	iased estimators, e and proportion	, Method of Max is. Large sample t	imum likelihood, ests for mean and

Reference Books

- 1. Irwin Miller and Marylees Miller, John E. Freund's: Mathematical Statistics with Applications, Pearson Education, 2012
- 2. Robert V. Hogg, Allen Craig Deceased and Joseph W. McKean: *Introduction to Mathematical Statistics*, Pearson Education, 2012.
- 3. Sheldon M. Ross: *Introduction to Probability and Statistics for Engineers and Scientists*, Elsevier Academic Press, 2009.
- 4. V.K Rohtagi and A.K. Saleh: An Introduction to Probability and Statistics, 2nd Ed., John Wiley & Sons, 2005.
- 5. A.M. Goon, M.K. Gupta and T.S. Dasgupta: *Fundamentals of Statistics* (Vol. I), 7th Ed., The World Press Pvt. Ltd., 2000.
- 6. Neil A. Weiss: *Introductory Statistics*, 7th Ed., Pearson Education, 2007.

Code BHM-213 (GE-2) C1	Title of Paper Programming in C (P)	Period per week 4L	Internal Assessment 40	Semester Examination 60
Unit-I	Number system – binary, octal, dec number systems, addition and subtraction and high level programming I flowcharts.	ction of binary r	numbers, Program	nming languages,

Unit-II Character set, Identifiers and Keywords, Constants, Variables, Declaration & Definition, Data Types, Operators, basic structure of C programming, If, Nested if, if-else-if, Switch, for loop, while loop, do-while loop, break, continue, goto statement.

Unit-III Pre-processor directives, Library functions, need for user define functions, Function prototyping, Definition of Function, Passing arguments to a function using Call by value & Call by reference, Returning multiple values, Recursion, Recursive Functions, Concept of Scope & lifetime, Storage classes - auto, register, static, extern.

Unit-IV Declaring Defining and Initializing array, Accessing elements of array, passing arrays to functions, Introduction to multidimensional arrays, strings, Pointers Declarations, Initializing Pointer, De-referencing Pointer, Structures, Overview of File handling.

Books Recommended:

- 1. Gottfried, Byron S: *Programming with C*, Tata McGraw Hill, 2006.
- 2. E. Balagurusamy, *Programming in ANSI C*, McGraw-Hill Education, 2002.
- 3. Y. Kanitkar, Let Us C, BPB Publications, 2006.

Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-213	Econometrics	4L	40	60
(GE-2) C2				
Unit-II	Statistical Concepts Normal distribution parameters; properties of estimators; test distributions of test statistics; testing hy and Type II errors; power of a test; tests Simple Linear Regression Model: Two ordinary least squares; properties of escaling and units of measurement; forecasting.	ting of hypother potheses related for comparing Variable Case estimators; goo	ses: defining statisd to population parameters from the Estimation of moduless of fit; test	stical hypotheses; arameters; Type I wo samples. del by method of s of hypotheses;
Unit-III	Multiple Linear Regression Model Estimators; goodness of fit - R2 and adhypotheses – individual and joint; fur (dummy) independent variables.	ljusted R2; par	tial regression co	efficients; testing
Unit-IV	Violations of Classical Assumption Multicollinearity; heteroscedasticity; se of a relevant variable; inclusion of irrele	rial correlation	. Specification A	nalysis Omission

- 1. Jay L. Devore: *Probability and Statistics for Engineers*, Cengage Learning, 2010.
- 2. John E. Freund: Mathematical Statistics, Prentice Hall, 1992.
- 3. Richard J. Larsen and Morris L. Marx: An Introduction to Mathematical Statistics and its Applications, Prentice Hall, 2011.
- 4. D.N. Gujarati and D.C. Porter: *Essentials of Econometrics*, 4th Ed., McGraw Hill, International Edition, 2009.
- 5. Christopher Dougherty: *Introduction to Econometrics*, 3rd Ed., Oxford University Press, Indian edition, 2007.

Paper Code	Title of the Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-213	CBCS paper	4L	40	60
(GE-2) C3	CBCS paper			

(From another Department)

Paper Code	Title of the Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-214 (AE-2)	English/MIL Communication	4L	40	60

(From Department of English)

B.Sc. (Hons.) Mathematics Semester – III Syllabus				
Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-311	PDE and System of ODE	4 L	40	60

Unit-I Total differential equations, Simultaneous total differential equations, Equations of the form dx/P = dy/Q = dz/R, Methods of grouping and multipliers, Solution of a system of linear differential equation with constant coefficients, An equivalent triangular system.
 Unit-II Formation and solution of partial differential equations, Equations easily integrable.

Linear partial differential equations of first order- Lagrange's equation, Non-linear partial differential equation of first order- Solution of some standard type of equations, Charpit's method.

Unit-III Homogeneous linear partial differential equations of second and higher orders with constant coefficients, Different cases for complimentary functions and particular integrals, Non-homogeneous partial differential equations with constant coefficients, Classification of second order linear partial differential equations, Partial differential equations reducible to equations with constant coefficients.

Unit-IV Variation of a functional, Variational problems, Euler's equations and its various cases, Externals, Functional depending on n unknown functions, Functionals depending on higher order derivatives, Variational problems in parametric form, Isoperimetric problem.

Books Recommended:

- 1. Dennis G. Zill: A First Course in Differential Equations with Modeling Applications, Cengage Learning; 10th edition, 2012.
- 2. Tyn Myint-U and Lokenath Debnath: *Linear Partial Differential Equations for Scientists and Engineers*, Birkhäuser; 4th ed. 2007.
- 3. D.A. Murray: Introductory Course on Differential Equations, Orient Longman (India), 1967.
- 4. A.S. Gupta: Calculus of Variations with Applications, Prentice Hall of India, 1997.
- 5. I.N. Sneddon: Elements of Partial Differential Equations, McGraw Hill Book Company, 1988.
- 6. Zafar Ahsan: Differential Equations and their Applications, Prentice Hall of India, 2nd Edition, 2012.

Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-312	Numerical Methods	4 L	40	60
Unit-I	Absolute, relative and percentage error	rs, General error	formula. Solution	of algebraic and
	transcendental equations: Bisection me	ethod, False posit	ion method, Fixed	l-point iteration
	method, Newton's method and its conv	vergence, Chebys	shev method. Solu	tion of system of
	non-linear equations by Iteration and N	Newton-Raphson	method.	•
Unit-II	Direct methods to solve the system of	linear equations	: Gauss elimination	on method, Gauss
	Jordan method, LU decomposition m	ethod. Indirect r	nethods: Gauss-Ja	acobi and Gauss-
	Seidal methods. The algebraic Eigen va	alue problems by	Householder and	Power method.
Unit-III	Finite difference operators and fir	nite differences,	Interpolation a	and interpolating
	polynomials: Newton's forward and b		-	
	Sterling's and Bessel's formula. Lagr		· · · · · · · · · · · · · · · · · · ·	
	their properties and Newton's general i			
Unit-IV	Numerical differentiation of tabular			1
	using Gauss quadrature formulae: Tra			•
	and their error estimation. Numerica	•	•	_
	Picard's method, Taylor series, Euler		<u> </u>	-
	method: Adams-Moulton method		<i>6</i>	

- 1. B. Bradie: A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007
- 2. M. K. Jain, S. R. K. Iyengar and R. K. Jain: *Numerical Methods for Scientific and Engineering Computation*, New age International Publisher, India, 5th edition, 2007
- 3. C. F. Gerald and P. O. Wheatley: *Applied Numerical Analysis*, Pearson Education, India, 7th edition, 2008.
- 4. S. S. Sastry: Introductory Methods of Numerical Analysis (Fifth Ed.), Prentice Hall of India (Ltd.) 2012.
- 5. M. Pal, Numerical Analysis for Scientists and Engineers, Narosa Publisher, 2007.
- 6. N. Ahmad, Fundamental Numerical Analysis with Error Estimation, Anamaya Publisher, 2009.

DHM 212	Cuoun Thoows	week	Assessment	Examination			
BHM-313	Group Theory	4L	40	60			
Unit-I	Sets, Relations, Functions, Binary operation properties, Subgroups, Order of an element theorem and its consequences, Normal subgroups.	of a group, (Cyclic groups, Cos	sets, Lagrange's			
Unit-II	Group Homomorphism, Isomorphisms, Ke	rnel of a hor	momorphism, The	homomorphism			
	theorems, The Isomorphism theorems, Permutation groups, Even and Odd permutations, Alternating groups, Cayley's theorem and Regular permutation group.						
Unit-III	Automorphism, Inner automorphism, Aut	sm, Automorphism group of finite and infinite cyclic					
	groups, Conjugacy relation, Normalizer and examples of Internal direct products.		J 1	•			
Unit-IV	Class equation of a finite group and its ap	oplications, S	Structure of finite	Abelian groups,			
	Cauchy's theorem, Sylow's theorem and cogroups, Non-simplicity tests.			•			

Period per

Internal

Semester

Books Recommended:

Code

1. N. Herstein: *Topics in Algebra*, Wiley Eastern Ltd. (2nd Edition), 1975.

Title of Paper

- 2. Joseph A. Gallian: Contemporary Abstract Algebra (4th Edition), Narosa Publishing House, New Delhi, 2011.
- 3. N. Jacobson: Basic Algebra Vol. I & II, W. H. Freeman and Company, 1974.
- 4. Surjeet Singh and Qazi Zameeruddin: *Modern Algebra*, Vikas Publishing House Pvt. Ltd., New Delhi, 1994.
- 5. N. S. Gopalakrishan: *University Algebra* (3rd Edition), New Age International (P) Limited, New Delhi, 2015.

Code BHM-314 (GE-3) C1	Title of Paper Information Security	Period per week 4L	Internal Assessment 40	Semester Examination 60	
Unit-I	Overview of Security: Protection versus security; aspects of security–data integrity, data availability, privacy; security problems, user authentication, Orange Book.				
Unit-II	Security Threats: Program threats, worms, viruses, Trojan horse, trap door, stack and buffer over flow; system threats- intruders; communication threats- tapping and piracy.				
Unit-III	Cryptography: Substitution, transposition ciphers, symmetric-key algorithms-Data Encryption Standard, advanced encryption standards, public key encryption - RSA; Diffie-Hellman key exchange, ECC cryptography, Message Authentication- MAC, hash functions.				
Unit-IV	Digital signatures: Symmetric key signa public key infrastructures. Security Mechanisms: Intrusion detection monitoring.				

- 1. W. Stallings: *Cryptography and Network Security Principles and Practices*, 4th Ed., Prentice-Hall of India, 2006.
- 2. C. Pfleeger and S.L. Pfleeger: Security in Computing, 3rd Ed., Prentice-Hall of India, 2007.
- 3. D. Gollmann: Computer Security, John Wiley and Sons, NY, 2002.
- 4. J. Piwprzyk, T. Hardjono and J. Seberry: Fundamentals of Computer Security, Springer-Verlag Berlin, 2003.
- 5. J.M. Kizza: Computer Network Security, Springer, 2007.
- 6. M. Merkow and J. Breithaupt: Information Security: Principles and Practices, Pearson Education, 2006.

Code	Title of Paper	Period per	Internal	Semester			
		week	Assessment	Examination			
BHM-314	Object Oriented Programming	4L+2P	40	60			
(GE-3) C2	Using C++ (P)*						
*Prerequisite:	Knowledge of C Language.						
Unit-I	Object Oriented Paradigm: Comparison	of Programmin	g Paradigms, Cha	racteristics of			
	Object-Oriented Programming Language	es, Object-Base	d programming L	anguages, Brief			
	History of C++, Structure of a C++ Prog	gram, Difference	e between C and C	C++, cin, cout,			
	new, delete operators, ANSI/ISO Standa	ard C++.					
Unit-II	Implementing OOPS concepts in C++, O	Objects and Clas	sses, Encapsulatio	n, Data			
	Abstraction, Inheritance, Polymorphism, Dynamic Binding, Message Passing, using						
	Reference Variables with Functions, Abstract Data Types, Constructors - Default and						
	Copy Constructor, Assignment Operator	* *					
	Spaces, This Pointer.	•	1. 0	•			
Unit-III	Access Modifiers – Private, Public and I	Protected. Imple	ementing Class Fu	nctions within			
	Class declaration or outside the Class de	claration, Insta	ntiation of objects	, Scope			
	Resolution Operator, Working with Frie	nd Functions, u	sing Static Class I	Members.			
	Understanding Compile Time Polymorp	hism, Function	Overloading.				
Unit-IV	Operator Overloading as Member Funct	ion and Friend	Function. Inherita	nce Basics,			
	Types of Inheritance – Simple, Multilev	el, Multiple, Hi	erarchical and Hy	brid, Virtual			
	Class, Upcasting & Downcasting, Virtua	al Function, Pur	e Virtual Function	1.			

- 1. A. R. Venugopal, Rajkumar, and T. Ravishanker: *Mastering C++*, TMH, 1997.
- 2. S. B. Lippman and J. Lajoie: C++ Primer, 3rd Ed., Addison Wesley, 2000.
- 3. Bruce Eckel: *Thinking in C++*, 2nd Ed., President, Mindview Inc., Prentice Hall., 2000.
- 4. D. Parasons: *Object Oriented Programming with C++*, BPB Publication, 1999.
- 5. Bjarne Stroustrup: *The C++ Programming Language*, 3rd Ed., Addison Welsley, 2000.
- 6. Steven C. Lawlor: *The Art of Programming Computer Science with C++*, Vikas Publication, 2002.
- 7. Schildt Herbert: C++: The Complete Reference, 4th Ed., Tata McGraw Hill, 1999.

Paper Code	Title of the Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-314 (GE-3) C3	CBCS paper	4L	40	60

(From another Department)

Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-315	Latex & Web Designing	4L	40	60
(SE-1) C1				
Unit-I	LaTeX: elements of LaTeX, typeset	ting mathematics,	, graphics in	LaTeX, PSTricks,
	Beamer presentation.			
Unit-II	Introduction to World Wide Web, c	communication on	the Internet,	Internet domains,
	Internet server identities, establishing	g connectivity on	the Internet,	Internet protocols,
	Internet services - E-mail, FTP, search	engines, web brov	vsers.	
Unit-III	Introduction to HTML, basic structur	re of a HTML do	cument, worki	ng with texts and
	tables, frames, images and links, forms	s, creating simple v	veb pages.	_
Unit-IV	Introduction to DHTML, benefit of CS	SS, CSS properties	s, CSS styling,	working with lists
	and tables, web page layout and editing	ng with CSS, writ	ing JavaScript	into HTML, basic
	programming using JavaScript.		_	
D l D				

- 1. L. Lamport. LATEX: A Document Preparation System, User's Guide and Reference Manual, Addison-Wesley, New York, second edition, 1994.
- 2. Martin J. Erickson and Donald Bindner: A Student's Guide to the Study, Practice, and Tools of Modern Mathematics, CRC Press, Boca Raton, FL, 2011.
- 3. Robert W. Sebesta: *Programming the World Wide Web*, (4th ed.), Addison Wesley, 2007.
- 4. Dick Oliver, Michael Morrison: Sams Teach Yourself HTML and CSS in 24 Hours, Pearson Education, 2005.
- Danny Goodman: JavaScript & DHTML Cookbook: Solutions and Example for Web Programmers, O'Reilly Media, 2003.
- 6. Ivan Bayross: HTML 5 and CSS 3 Made Simple, BPB, 2012.

Code BHM-315 (SE-1) C2	Title of Paper Computer Graphics	Period per week 4L	Internal Assessment 40	Semester Examination 60	
Unit-I	Introduction of computer graphics a graphics, raster scan and random scan g generators, colour display techniques, in	raphics storages	s, displays process	sors and character	
Unit-II	Points, lines and curves: scan conversion, line drawing algorithms, circle and ellipse generation algorithms, conic-section generation, and polygon filling algorithms.				
Unit-III	Two-dimensional viewing, coordinate s line clipping, line and polygon clipping	•	ransformations, cl	ipping: point and	
Unit-IV	Three-dimensional concepts: basic reflections, projections, three dimensions splines, quadric surfaces, three dimensions splines, quadric surfaces, three dimensions splines.	transformation nal object repre	esentation: polygo		

- 1. D. Hearn and M.P. Baker: *Computer Graphics*, 2nd Ed., Prentice–Hall of India, 2004.
- 2. J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes: *Computer Graphics: Principals and Practices*, 2nd Ed., Addison-Wesley, MA, 1990.
- 3. D.F. Rogers: Procedural Elements in Computer Graphics, 2nd Ed., McGraw Hill Book Company, 2001.
- 4. D.F. Rogers and A. J. Admas: *Mathematical Elements in Computer Graphics*, 2nd Ed., McGraw Hill Book Company, 1990.

	D.C. (Hang)	Mathamatica				
		Mathematics ter – IV				
		abus				
Code	Title of Paper	Period per	Internal	Semester		
Code	Title of Laper	week	Assessment	Examination		
BHM-411	Real Analysis	4L	40	60		
Unit-I	Bounded and unbounded sets, Infimum					
CIIIt-I	completeness property of R, Archimed	-	-	*		
	numbers in R, Dedekind form of com					
	completeness property of R and Dede					
	a set, Limit point of a set, Closed set a					
	a set, Bolzano-Weierstrass theorem for		ms/resures. Derive	a set, closure of		
Unit-II	Sequence of real numbers, Bounded s		nts of a sequence	Rolzano		
	Weierstrass theorem for sequence, Lin	-	_			
	convergent sequences, Cauchy's sequences			•		
	Algebra of sequences, Theorems on li			_		
	sequences, Monotone convergence Th	-	, buosequences, iv	Tollotolle		
Unit-III	Infinite series and its convergence and		chy's criterion for	convergence of		
	series, Test for convergence of positiv	_	-	_		
	Cauchy's n^{th} root test, Raabe's test, I					
	Leibnitz test, Absolute and conditiona		iograficost, michini	img beries,		
Unit-IV	Continuous functions ($\varepsilon - \delta$ approach	•	functions. Types o	of discontinuities		
	, , ,	* *	• •			
	Sequential criterion for continuity and discontinuity, Theorems on continuity, Uniform continuity, Relation between continuity and uniform continuity, Derivative of a function,					
	Relation between continuity and diffe	•	•			
	Darboux theorem, Rolle's theorem, La	•	_	_		
	value theorem, Taylor's theorem with	-		•		
	, <i>j</i> 01 01111 // 1011	,	5 5			

- 1. R. G. Bartle and D. R. Sherbert: *Introduction to Real Analysis* (3rd Edition), John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2003.
- 2. S. C. Malik and Savita Arora: Mathematical Analysis, New Age International (P) Ltd. Publishers, 2009.
- 3. K. A. Ross, *Elementary Analysis: The Theory of Calculus, under graduate Texts in Mathematics*, Springer (SIE), Indian reprint, 2004.
- 4. Sudhir R. Ghorpade and Balmohan V. Limaye: *A course in Calculus and Real Analysis, Undergraduate Text in Maths.*, Springer (SIE), Indian reprint 2006.
- 5. T. M. Apostol: Mathematical Analysis, Addison-Wesley Series in Mathematics, 1974.
- 6. Gerald G. Bilodeau, Paul R. Thie, G. E. Keough: An Introduction to Analysis, 2nd Ed., Jones & Bartlett, 2010.
- 7. Dipak Chatterjee: *Real Analysis*, 2nd ed., PHI Learning Pvt. Ltd., 2015.

Code	Title of Paper	Period per	Internal	Semester
	1	week	Assessment	Examination
DIIN/ 410	D: Tl			
BHM-412	Ring Theory	4L	40	60
Unit-I	Rings and their properties, Boolean Ring,	Integral dom	ain, Division r	ing and Field,
	Subrings, Ideals and their properties, Operati	ons on ideals,	Ideal generated	by a subset of a
	ring, Quotient rings.			
Unit-II	Homomorphism of rings and its propert	ies, Kernel o	of a homomorp	ohism, Natural
	homomorphism, Isomorphism and related the	eorems, Field o	of quotients.	
Unit-III	Polynomial rings over commutative rings, P	Properties of R	[X], Division al	gorithm and its
	consequences, Factorization of polynomials	, Irreducibility	test, Eisenstein	's criterion for
	irreducibility.			
Unit-IV	Factorization in integral domains, prime and	irreducible el	ement, Principal	Ideal Domain,
	Euclidean Domain, Unique Factorization Do	main and its pi	operties.	
D 1 D				

- 1. I. N. Herstein: *Topics in Algebra*, Wiley Eastern Ltd. (2nd Edition), 1975.
- 2. N. Jacobson: Basic Algebra, Volume I and II. W. H. Freeman and Co., 1974.
- 3. Surject Singh and Qazi Zameeruddin: Modern Algebra, Vikas Publication, 1994.
- 4. J.A. Gallian: Contemporary Abstract Algebra, Narosa Publication, 2011.

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination
BHM-413	Linear Programming	4L	40	60
Unit-II	Linear Programming Problem: Definition Solution space, solution – feasible, baredundancy, degeneracy, Solution of L programming, Branch and Bound method. Simplex Method, Degeneracy in Simplex results of the solution of the	nsic feasible, P Problems - nethod, Duality	optimal, infeas Graphical M in LP, Dual Si	ible, multiple, ethod, Integer mplex Method,
Unit-III	Economic interpretation of Dual, Transport different methods (North-West corner, L Stepping stone method, modified distribution Degeneracy in transportation problems. Assignment Problem, Hungarian Method for models, EOQ model with or without replacement policy, Group replacement problems.	east Cost, Vog on method, Unba or Assignment I shortages, Rep	gel's Approximal alanced transpore Problem, Eleme	ation Method), tation problem, ntary inventory
Unit-IV	Sequencing problem m machines n job	s problem Gr	anhical method	for sequence

Unit-IV Sequencing problem, *m* machines *n* jobs problem, Graphical method for sequence problem. Game Theory, pure and mixed strategies, Saddle point, Two-Persons-Zero-Sum Game, Game with mixed strategies, Dominance rule, Graphical Method, Inter - relation between the theory of games and linear programming, Solution of game using Simplex method.

Books Recommended:

- 1. A. H. Taha: Operations Research An Introduction. Prentice Hall, 2010
- 2. J. K. Sharma: *Operations Research Theory and Application*, Macmillian Pub., 2007.
- 3. J. K. Sharma: Operations Research Problems and Solutions, Macmillian Pub., 2007.
- 4. G. Hadley: Linear Programming, Narosa Publishing House, 2002
- 5. S. D. Sharma: Operations Research, KNRN Publications, 2013

Code BHM-414 (GE-4) C1	Title of Paper Mathematical Modelling	Period per week 4L	Internal Assessment 40	Semester Examination 60
Unit-II	Introduction- Definition & Simple situation Mathematical Modelling, Classification of Mathematical Models. Mathematical mode Limitations of Mathematical Modelling. Mathematical Models through ODE: Lin Growth and Decay Models, Compartment Epidemics through Systems, Compartment	Mathematical Mathematical Mathematical Models, Models through	Iodels, Some chametry, Algebra and Decay Models. M.M. in Popular system of ODI	els, Non-linear lation Growth, E, Modelling in
Unit-III	Economics through systems of ODE. MM and motion of satellites. Difference Equations with Applications difference equations: Homogeneous, No $xx_{n+1} - bx_n = a$, method of Undetermine equations: Homogeneous equations, Au	: Formation of n-homogeneous ed Coefficients. xiliary equation	f diff. equation, The equation Second order li	ns. First order s of the form near difference
Unit-IV	Applications of difference equations (Mode Integral Equations: Definition of Integral equations. Conversion of linear diff. equat examples. Conversion of boundary value Function. Integral equations of the convolu- Fredholm equations with separable kernels	al equation. Frion to an integrium problems to in ution type. Integration	al equation and tegral equations	vice versa with using Green's

- 1. J. N. Kapur: *Mathematical Modelling*, 2nd Ed., New Age Publications, 2015
- 2. UMAP-Module 322: Published in cooperation with the Society for Industrial and Applied Mathematics
- 3. B. S. Grewal: *Higher Engineering Mathematics*, Khanna Publication, 2014.

Code BHM-414 (GE-4) C2	Title of Paper Data Structures (P)%	Period per week 4L+2P	Internal Assessment 40	Semester Examination 60	
Unit-I	** Prerequisite BHM-213 (GE-2) C1 Definition of Data Structure, Types of Data Multi-Dimensional Arrays, Row and Colum Dimensional Arrays, Recursion, Hashing.			•	
Unit-II	Concept of a Linked List, Linear Single and Double Linked Lists, Circular linked List, Operations on Linked Lists and implementation in C, Applications of Linked List. Introduction to Stack, Implementation of Stack in C using Array and Linked List, Applications of Stack.				
Unit-III	Introduction to Queue, Implementation of Queue in C using Array and Linked List, Applications of Queue. Concept of a Tree, Definitions and Examples of n-ary Tree, Binary Tree, Strictly Binary Tree, Complete Binary Tree, Almost Complete Binary Tree. Level of a Node, Height and Depth of a Tree, Binary Search Tree, Operation on Trees, Tree Traversal and Search Algorithm				
Unit-IV	Huffman Algorithm. Definitions of Vertex, Edge and Graph, Types of Graphs – Directed and Undirected, Connected and Disconnected, Cyclic and Acyclic. Representation of Graphs: Adjacency Matrix, Linked List. Incidence Matrix, Path Matrix. Graph Algorithms – Breadth First Search (BFS), Depth First Search (DFS), Minimum Spanning Tree, Kruskal's and Prim's Algorithm.				
	Searching Techniques - Linear Search and Sort, Insertion Sort, Bubble Sort, Quick Sort	-	-	ues - Selection	

- 1. S. Lipshutz, *Data Structures:* Schaum Outline Series, Tata Mc-graw Hill, 2012.
- 2. D. Samanta, Classic Data Structures: PHI Publication, 2010.
- 3. Yashavant P. Kanetkar: Data Structures through C, Second Edition, BPB, 2003.
- 4. Yashavant P. Kanetkar: Understanding Pointers in C, BPB, 2003.

Code	Title of Paper	Period per	Internal	Semester				
		week	Assessment	Examination				
BHM-415	Graph Theory	4 L	40	60				
(SE-2) C1								
Unit-I	Definition, examples and basic pr			1 0 1				
	partite graphs, isomorphism of graphs, paths and circuits, Eulerian circuits, Hamiltonian							
	cycles, the adjacency matrix, weight	U 1 ·	ling salesman's pro	blem, shortest path,				
	Dijkstra's algorithm, Floyd-Warshal	C						
Unit-II	Applications of paths and circuits: tl	-						
	algorithm, tournaments, directed n		0 1					
	basic properties of trees, spannin	•	1 .	gorithms, Kruskal's				
	algorithm, Prim's algorithm, acyclic	U 1	_					
Unit-III	Planar graphs, colouring of graphs,							
	theorem, circuit testing, facilities de	•						
	maximal flows, rational weights, ap	•		•				
Unit-IV	Circuit testing, facilities design, flow			_				
maximal flows, rational weights, applications of directed networks, matchings.								

- 1. Edgar G. Goodaire and Michael M. Parmenter: *Discrete Mathematics with Graph Theory*, 2nd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2003.
- 2. Rudolf Lidl and Günter Pilz: *Applied Abstract Algebra*, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.
- 3. C.L. Liu: *Elements of Discrete Mathematics*, 2nd Ed., Tata McGraw Hill Publishing Company Ltd., 2001

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination
BHM-415 (SE-2) C2	Fuzzy Sets and Logics	4L	40	60
Unit-I	Fuzzy Sets and Uncertainty: Uncertainty functions, chance versus fuzziness, proper Relations: Cardinality, operations, propert fuzzy tolerance and equivalence relations, for the set of th	ties of fuzzy set ies, fuzzy Cartes	ts, fuzzy set op sian product an	erations. Fuzzy
Unit-II	Fuzzification and Defuzzification: Various forms of membership functions, fuzzification, defuzzification to crisp sets and scalars. Fuzzy Logic and Fuzzy Systems: Classic and fuzzy logic, approximate reasoning, Natural language, linguistic hedges, fuzzy rule based systems, graphical technique of inference.			
Unit-III	Development of membership functions: inference, rank ordering, neural networks, Arithmetic and Extension Principle: Func mapping, interval analysis, vertex method a	genetic algorithm tions of fuzzy se	ns, inductive re ets, extension p	asoning. Fuzzy
Unit-IV	Fuzzy Optimization: One dimensional fuzzy casual relations, fuzzy cognitive maps, ager Fuzzy control system design problem, fuzzy process control, industrial applications.	nt based models.	Fuzzy Control	Systems:

- 1. T.J. Ross: Fuzzy Logic with Engineering Applications, 3rd Ed., Wiley India Pvt. Ltd., 2011.
- 2. H.J. Zimmerman: Fuzzy Set Theory and its Application, 3rd Ed., Springer India Pvt. Ltd., 2006.
- 3. G. Klir and B. Yuan: Fuzzy Set and Fuzzy Logic: Theory and Applications, Prentice Hall of India Pvt. Ltd., 2002.
- 4. G. Klir and T. Folger: *Fuzzy Sets, Uncertainty and Information*, Prentice Hall of India Pvt. Ltd., 2002.

B.Sc. (Hons.) Mathematics Semester – V Syllabus				
Code	Title of Paper	Period	Internal	Semester
		per week	Assessment	Examination
BHM-511	Riemann Integration and Series of Functions	4L	40	60
Unit-I	Definition, existence and properties of Riemann integral of a bounded function, Darboux			
	theorem, Condition of integrability, Riemann integrability for continuous functions, monotonic			
	function and theorems on function with finite or in	nfinite numb	er discontinuity	(without proof).

Definition, existence and properties of Riemann integral of a bounded function, Darboux theorem, Condition of integrability, Riemann integrability for continuous functions, monotonic function and theorems on function with finite or infinite number discontinuity (without proof). The Riemann integral through Riemann sums, Equivalence of two definitions, Properties of Riemann integral, Fundamental theorem of calculus, First Mean Value Theorems, Second Mean Value Theorems, Generalized Mean Value Theorems.

Unit-II Definition of improper integrals, Convergence of improper integrals, Test for convergence of improper integrals, Comparison test, Cauchy's test for convergence, Absolute convergence, Abel's Test, Dirichlet's Test, Beta and Gamma functions and their properties and relations.

Unit-III Pointwise and uniform convergence of sequences and series of functions, Cauchy's criterion for uniform convergence of sequence and series, Weierstrass M-test, Uniform convergence and continuity, Uniform convergence and differentiation, Uniform convergence and integration, Weierstrass Approximation Theorem.

Unit-IV Fourier Series, Fourier Series for even and odd functions, Half Range Series, Fourier Series on intervals other than $[-\pi, \pi]$.

Power Series, Radius of Convergence, Cauchy's Hadamard Theorem, Uniform and Absolute convergence, Abel's Theorem (without proof), exponential and logarithmic functions.

Books Recommended:

- 1. R. G. Bartle and D. R. Sherbert: *Introduction to Real Analysis* (3rd Edition), John Wiley and Sons (Asia) Pvt. Ltd., Singapore.
- 2. S. C. Malik and Savita Arora: Mathematical Analysis, New Age International (P) Ltd. Publishers, 2009.
- 3. K. A. Ross, *Elementary Analysis: The Theory of Calculus, Under graduate Texts in Mathematics*, Springer (SIE), Indian reprint, 2004.
- 4. Sudhir R. Ghorpade and Balmohan V. Limaye: *A course in Calculus and Real Analysis, Undergraduate Text in Maths.*, Springer (SIE), Indian reprint 2006.
- 5. T. M. Apostol: Mathematical Analysis, Addison-Wesley Series in Mathematics, 1974.
- 6. Gerald G. Bilodeau, Paul R. Thie, G. E. Keough: An Introduction to Analysis, 2nd Ed., Jones & Bartlett, 2010.
- 7. A. Mattuck: Introduction to Analysis, Prentice Hall, 1990.
- 8. Charles G. Denlinger: Elements of Real Analysis, Jones & Bartlett (Student Edition), 2011.
- 9. Dipak Chatterjee: Real Analysis, 2nd ed., PHI Learning Pvt. Ltd., 2015.

1	J			
Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-512	Multivariate Calculus	4 L	40	60
Unit-I	Functions of several variables. Domains and	Range. Function	nal notation, Lev	el curves and level
	surfaces. Limits and continuity. Partial derivation	tives. Total dif	ferential. Fundam	nental lemmas.
	Differential of functions of n variables and of	vector function	ns. The Jacobian	matrix.
	Derivatives and differentials of composite fun	ctions, The gen	neral chain rule.	
Unit-II	Implicit functions. Inverse functions. Curvili	near co-ordina	tes. Geometrical	Applications. The
	directional derivatives. Partial derivatives o	f higher order	: Higher derivat	tives of composite
	functions. The Laplacian in polar, cylindrical	and spherical	co-ordinates. Hi	gher derivatives of
	implicit functions. Maxima and minima of fur	nctions of sever	ral variables.	
IInit_III	Vector fields and scalar fields. The gradient fi	ield. The diver	zence of a vector	field. The curl of a

Vector fields and scalar fields. The gradient field. The divergence of a vector field. The curl of a vector field. Combined operations. Irrotational fields and Solenoidal fields. Double integrals, triple integrals and multiple integrals in general. Change of variables in integrals. Arc length and surface area.

Unit-IV Line integrals in the plane. Integrals with respect to arc length. Basic properties of line integrals. Line integrals as integrals of vectors. Green's Theorem. Independence of path, Simply connected domains, Extension of results to multiply connected domains. Line Integrals in space. Surfaces in space, orientability. Surface integrals. The divergence theorem, Stokes's theorem. Integrals independent of path.

- 1. Wilfred Kaplan: Advanced Calculus., Adisson-Wasley Publishing Company, 1973.
- 2. E.Swokowski: Calculus with Analytical Geometry, Prindle, Weber & Schmidt, 1994.
- 3. E.Kreyzig: Advanced Engineering Mathematics, John Wiley and Sons, 1999.
- 4. David Widder: Advanced Calculus, Prentice Hall of India, 1999.
- 5. S. C Malik and Savita Arora: Mathematical Analysis, New Age International(P) 2009

Code	Title of Paper	Period per	Internal	Semester	
		week	Assessment	Examination	
BHM-513	Metrics Spaces	4L	40	60	
Unit-I	Definition and examples of metric spaces, of Neighbourhood of a point, Open sets, Interior of a set Poundamental dispersion of a set	or points, Limit	points, Closed s		
Unit-II	of a set, Boundary points, diameter of a set, Subspace of a metric space. Convergent and Cauchy sequences, Complete metric space, Dense subsets and separable spaces, Nowhere dense sets, Continuous functions and their characterizations, Isometry and homeomorphism.				
Unit-III	Compact spaces, Sequential compactness at Intersection property, Continuous functions		1 1 2	y, Finite	
Unit-IV	Disconnected and connected sets, connected connected sets.	d subsets of R, C	Continuous funct	tions and	

- 1. G.F. Simmons: Introduction to Topology and Modern Analysis, McGraw Hill, 1963.
- 2. E.T. Copson: *Metric Spaces*, Cambridge University Press, 1968.
- 3. P.K. Jain and Khalil Ahmad: *Metric Spaces*, Second Edition, Narosa Publishing House, New Delhi, 2003.
- 4. B. K. Tyagi: First Course in Metric Spaces, Cambridge University Press, 2010.

Code BHM-514	Title of Paper Linear Algebra	Period per week 4L	Internal Assessment 40	Semester Examination 60
Unit-I	Definition examples and basic properties Dependence Independence, Linear combinate intersection of subspaces, Direct sum of subspaces	ions and span,	<u> </u>	•
Unit-II	Definition and examples of linear transform. Range and kernel, The rank and nullity of a and its consequence, The matrix represent basis, Isomorphism.	linear transfor	rmation, Rank-N	fullity Theorem
Unit-III	Scalar product in an Inner product spaces. O linear spaces, Inner product on complex orthogonal sets and projections, Gram-Scinequality.	vector space	es, Orthogonal	Complements,
Unit-IV	Eigenvalues and eigenvectors, Characteristic	e equation and	l polynomial, Ei	genvectors and

Books Recommended:

1. David C. Lay: *Linear Algebra and Its Applications (3rd Edition)*, Pearson Education Asia, Indian Reprint, 2007.

eigenvalues of linear transformations and matrices, The Cayley-Hamilton Theorem. Similar matrices and Diagonalization, Eigenvalues and eigenvectors of symmetric and Hermitian matrices, Orthogonal Diagonalization, Quadratic forms and conic sections.

- 2. Geory Nakos and David Joyner: *Linear Algebra with Applications*, Brooks/ Cole Publishing Company, International Thomson Publishing, Asia, Singapore, 1998.
- 3. Stephen H. Friedberg, Arnold J. Insel and L.E.Space: *Linear Algebra*, 4th Edition, PHI Pvt Ltd., New Delhi, 2004.
- 4. I. V. Krishnamurty, V.P. Mainra, J.L. Arora: *An Introduction to Linear Algebra*, East West Press, 2002.

Code	Title of Paper	Period per	Internal	Semester		
		week	Assessment	Examination		
BHM-515	Modelling and Simulation	4L	40	60		
(DS-1) C1						
Unit-I	What is Mathematical Modeling? History of	f Mathematical	Modeling latest	development		
Omt-1	What is Mathematical Modeling? History of Mathematical Modeling, latest development in Mathematical Modeling, Merits and Demerits of Mathematical Modeling, Introduction					
	in Mathematical Modeling, Merits and Demerits of Mathematical Modeling. Introduction to difference equations, Non-linear Difference equations, Steady state solution and linear					
	•	ice equations, 5	leady state solut	ion and imear		
TI24 TT	stability analysis.	M. 1.1. C	41	D		
Unit-II	Introduction to Discrete Models, Linea			=		
Newton's Law of Cooling, Bank Account Problem and mortgage problem, Dru Problem, Harrod Model of Economic growth, War Model, Lake pollution mod						
	in the bloodstream model, Arm Race m		•	•		
	dependent growth models with harvesting	g, Numerical s	olution of the i	models and its		
	graphical representation using EXCEL.					
Unit-III	Introduction to Continuous Models, Carl	_	_			
	Growth and decay of current in a L-R Circuit, Horizontal Oscillations, Vertical					
	Oscillations, Damped Force Oscillation	•	0			
	Mathematical Model of Influenza Infection (within host), Epidemic Models (SI, SIR,					
	SIRS, SIC), Spreading of rumour model, S	•				
	Stability Analysis, logistic and gomperzian growth, preypredator model, Competition					
	models, Numerical solution of the models a					
Unit-IV	Fluid flow through a porous medium, heat f	flow through a s	mall thin rod (or	ne		
	dimensional), Wave equation, Vibrating str	ing, Traffic flow	v, Theory of Car	-following,		
	Crime Model, Linear stability Analysis: one	e and two specie	es models with d	iffusion,		
	Conditions for diffusive instability with exa	amples.				

- 1. B. Albright: Mathematical Modeling with Excel, Jones and Bartlett Publishers, 2010.
- 2. F.R. Marotto: Introduction to Mathematical Modeling using Discrete Dynamical Systems, Thomson Brooks/Cole, 2006.
- 3. J.N. Kapur: Mathematical Modeling, New Age International, 2005.
- 4. B. Barnes and G. R. Fulford: *Mathematical Modelling with Case Studies*, CRC Press, Taylor and Francis Group, 2009.
- 5. L. Edsberg: Introduction to Computation and Modeling for Differential Equations, John Wiley and Sons, 2015.

Code	Title of Paper	Period per	Internal	Semester	
		week	Assessment	Examination	
BHM-515	Discrete Mathematics	4L	40	60	
(DS-1) C2					
Unit-I	Sets - finite and Infinite sets, uncountably Ir	finite Sets; fu	nctions, relation	s, Properties of	
	Binary Relations, Closure, Partial Ordering Relations; counting - Pigeonhole Principle,				
	Permutation and Combination; Mathematical Induction, Principle of Inclusion and				
	Exclusion.				
Unit-II	Recurrence Relations, generating functions,	Linear Recui	rence Relations	s with constant	
	coefficients and their solution, Substitution N	lethod, Recurr	ence Trees, Mas	ster Theorem	
Unit-III	Basic Terminology, Models and Types,	multigraphs	and weighted	graphs, Graph	
	Representation, Graph Isomorphism, Conn	ectivity, Eule	r and Hamilton	nian Paths and	
	Circuits, Planar Graphs, Graph Coloring,	•			
	Trees, Introduction to Spanning Trees.	•	23	1 1	
Unit-IV	Logical Connectives, Well-formed Formulas	, Tautologies,	Equivalences, In	ıference	
	Theory		•		

- 1. C.L. Liu, D.P. Mahopatra: Elements of Discrete mathematics, 2nd Edition, Tata McGraw Hill, 1985,
- 2. Kenneth Rosen: Discrete Mathematics and Its Applications, Sixth Edition, McGraw Hill 2006
- 3. T.H. Coremen, C.E. Leiserson, R. L. Rivest: *Introduction to Algorithms*, 3rd edition Prentice Hall on India, 2009
- 4. M. O. Albertson and J. P. Hutchinson: *Discrete Mathematics with Algorithms*, John wiley Publication, 1988
- 5. J. L. Hein: Discrete Structures, Logic, and Computability, 3rd Edition, Jones and Bartlett Publishers, 2009
- 6. D.J. Hunter: Essentials of Discrete Mathematics, Jones and Bartlett Publishers, 2008

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination		
BHM-516 (DS-2) C1	Mathematical Finance	4L	40	60		
Unit-I	Introduction, The accumulation and a Simple interest, Compound interest, Prorates of interest and discount, Forces of value, Unknown time, Unknown raexamples.	esent value, The of interest and di	effective rate of d scount, Varying i	iscount, Nominal interest. Equation		
Unit-II	Introduction, Annuity-immediate, Annuity-due, Annuity values on any date, Perpetuities, Unknown time, Unknown rate of interest, Varying interest, Annuities not involving compound interest. Differing payment and interest conversion periods, Annuities payable less frequently than interest convertible, Annuities payable more frequently than interest convertible, Continuous annuities, Payments varying in arithmetic progression, Payments varying in geometric progression.					
Unit-III	Introduction, Finding the outstanding funds, Differing payment periods and payments, Amortization with continuous	d interest conve	ersion periods, V	arying series of		
Unit-IV	Introduction, Types of securities, Price between coupon payment dates, Determ Serial bonds, some generalizations, of cash flow analysis, Uniqueness of the yof a fund	nination of yields her securities, V	s rates, Callable as aluation of secur	nd putable bonds, rities. Discounted		

- 1. Stephen G. Kellison: The Theory of Interest, 3rd Edition. McGraw Hill International Edition (2009).
- 2. R. J. Elliott and P. E. Kopp: Mathematics of Financial Markets, Springer (1999).
- 3. S. Chandra, S. Dharmaraja, Aparna Mehra, R. Khemchandani: *Financial Mathematics: An Introduction*, Narosa Publishing House, 2014.

Code BHM-516 (DS-2) C2	Title of Paper Dynamical Systems	Period per week 4L	Internal Assessment 40	Semester Examination 60		
Unit-I	theorem, growth equation, logistic grov	tems: First order equations, existence uniqueness growth, constant harvesting, Planar linear systems, space, n-dimensional linear systems, stable, unstable				
Unit-II	Nonlinear autonomous Systems: Motion of pendulum, local and global stability, Liapunov method, periodic solution, Bendixson's criterion, Poincare Bendixson theorem, limit cycle, attractors, index theory, Hartman Grobman theorem, nonhyperbolic critical points, center manifolds, normal forms, Gradient and Hamiltonian systems.					
Unit-III	Local Bifurcation: Fixed points, saddle node, pitchfork trans-critical bifurcation, Hopf bifurcation, co-dimension. Discrete systems: Logistic maps, equilibrium points and their local stability, cycles, period doubling, chaos, tent map, horse shoe map.					
Unit-IV	Deterministic chaos: Duffing's oscillat chaos, necessary conditions for chaos.	or, Lorenz Syste	em, Liapunov exp	oonents, routes to		

- 1. M.W. Hirsch, S. Smale, R.L. Devaney: *Differential Equations, Dynamical Systems and an Introduction to Chaos*, Academic Press, 2008.
- 2. S.H. Strogatz: Nonlinear Dynamics and Chaos, Westview Press, 2008.
- 3. M. Lakshmanan, S. Rajseeker: Nonlinear Dynamics, Springer, 2003.
- 4. L. Perko: Differential Equations and Dynamical Systems, Springer, 1996.
- 5. J.H. Hubbard, B.H. West: Differential equations: A Dynamical Systems Approach, Springer-Verlag, 1995.
- 6. D. Kaplan, L. Gloss: Understanding Nonlinear Dynamics, Springer, 1995.
- 7. S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990.

B.Sc. (Hons.) Mathematics Semester – VI Syllabus				
Code	Title of Paper	Period per	Internal	Semester
		week	Assessment	Examination
BHM-611	Integral Equations and Calculus of Variations	4L	40	60

Unit-I Preliminary Concepts: Definition and classification of linear integral equations. Conversion of initial and boundary value problems into integral equations. Conversion of integral equations into differential equations. Integro-differential equations. Fredholm Integral Equations: Solution of integral equations with separable kernels, Eigen values and Eigen functions. Solution by the successive approximations, Neumann series and resolvent kernel. Solution of integral equations with symmetric kernels, Hilbert-Schmidt theorem, Green's function approach.

Unit-II Volterra Integral Equations: Successive approximations, Neumann series and resolvent kernel. Equations with convolution type kernels. Solution of integral equations by transform methods: Singular integral equations, Hilbert transform.

Unit-III Calculus of Variations: Basic concepts of the calculus of variations such as functionals, extremum, variations, function spaces, the brachistochrone problem.

Necessary condition for an extremum, Euler's equation with the cases of one variable and several variables, Variational derivative. Invariance of Euler's equations. Variational problem in parametric form.

Unit-IV General Variation: Functionals dependent on one or two functions, Derivation of basic formula, Variational problems with moving boundaries, Broken extremals: Weierstrass—Erdmann conditions.

Books Recommended:

- 1. Abdul J. Jerry: Introduction to Integral Equations with Applications, 2nd Ed., Clarkson University Wiley Publishers, 1999.
- 2. G. L. Chambers: *Integral Equations: A short Course*, International Text Book Company Ltd., 1976.
- 3. R. P. Kanwal: Linear Integral Equations, 2nd Ed., Birkhauser Bosten, 1997.
- 4. Hochstadt Harry: Integral Equations, John Wiley & Sons, 1989.
- 5. I. M. Gelfand, S.V. Fomin: Calculus of Variations, Dover Books, 2000.
- 6. Weinstock Robert: Calculus of Variations with Applications to Physics and Engineering, Dover Publications, INC., 1974.

Code	Title of Paper	Period	Internal	Semester		
		per week	Assessment	Examination		
BHM-612	Complex Analysis	4L	40	60		
Unit-I	Complex number system, Algebraic properties, Geometric interpretation, exponential					
	forms, powers and roots, Properties of moduli, Regions in complex plane, Limit, continuity and derivatives.					
Unit-II	Analytic functions, CR equations, sufficient conditions, polar conditions, Harmonic functions, Construction of analytic function, Line integral.					
Unit-III	Cauchy Goursat theorem, Cauchy integral formula, Derivatives of analytic function,					
	Fundamental theorem of calculus in the complex plane, Taylor's and Laurent series.					
Unit-IV	Definitions and examples of conformal mappings, Zeros of analytic function, Residues, Residue at poles, Residue theorem, Evaluation of Integrals involving sine and cosine series.					

- 1. R.V. Churchill and J W Brown: *Complex Variable & Applications*. McGraw Hill, International Book Company, London., 2009.
- 2. Ponnuswamy: An Introduction to Complex Analysis, Narosa Publication, 2011.

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination		
BHM-613	Differential Geometry	4L	40	60		
Unit-I	Tensors: Summation convention, co-ordinate transformation, Scalar, contravariant and covariant vectors, Tensors of higher rank, Algebra of tensors and contraction, Metric tensor and 3-index christofell symbols, covariant derivative of contravariant, covariant vectors and higher rank tensors.					
Unit-II	Curves in R^3 : Representation of curves, unit speed curves, tangent to a curve, principal vector and binormal vector, osculating plane, normal plane and rectifying plane, curvature and torsion, Serret - Frenet formula, Helix.					
Unit-III	Behaviors of curve near a point, osculating circle and osculating sphere, Necessary and sufficient condition for a curve to lie on a sphere, involutes and evolutes, Fundamental existence theorem for space curves.					
Unit-IV	surface normal, Surface of revolution, first co-efficient on a surface, angle between tar	R^3 : Definition and examples of a smooth surface, tangent plane and unit ormal, Surface of revolution, first fundamental form and its properties, Direction and on a surface, angle between tangential direction on a surface, second atal form, normal curvature, Principal curvature, Shape operator and its R^3 :				

- 1. B.O. Neill: Elementary Differential Geometry, Academic Publishers, 2006.
- 2. Andrew Pressley: Elementary Differential Geometry, Springer, 2010.
- 3. M. P. Do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.
- 4. T. G. Willmore: Introduction to Differential Geometry, Oxford University Press, 1959.
- 5. D. Somasundaram: Differential Geometry, Narosa Publishing House, 2005.

Code	Title of Paper	Period per	Internal	Semester	
		week	Assessment	Examination	
BHM-614	Mechanics	4 L	40	60	
Unit-I	Moment of force about a point and an a couple about a line, resultant of a force diagram, free body involving interior spoint equivalent loading.	e system, distrib ections, general	outed force syst equations of eq	em, free body uilibrium, two	
Unit-II	Laws of friction, application to simple and complex surface contact friction problems, transmission of power through belts, screw jack, wedge, first moment of an area and the centroid, other centers, theorem of Pappus Guldinus, second moments and the product of area of a plane area, transfer theorem, relation between second moments and products of area, polar moment of area, principal axes.				
Unit-III	Conservative force field, conservation f kinetic energy and work kinetic energy e momentum equation for a single particle a	expression based	on center of ma	-	
Unit-IV	Translation and rotation of rigid bodies, govector for different references, relationsh references, acceleration of particle for difference arotating frame of reference, frame of reference.	ip between velooferent references,	cities of a partic motion of a par	le for different	

- 1. I.H. Shames and G. Krishna Mohan Rao: *Engineering Mechanics: Statics and Dynamics*, (4th Ed.) Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2009.
- 2. R.C. Hibbeler and Ashok Gupta: *Engineering Mechanics: Statics and Dynamics*, 11th Ed. Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi, 2010.
- 3. A.S. Ramsey: Statics, Cambridge University Press, 2009.
- 4. John L. Synge Byron A. Griffith: *Principle of Mechanics*, Mc-GrawHill, International Student Edition, 2011.
- 5. S.L. Loney: *An Elementary Treatise on the Dynamics of a Particle and of Rigid Bodies*, G.K. Publisher; Second edition, 2016.

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination	
BHM-615 (DS-3) C1	Boolean Algebra and Automata Theory	4L	40	60	
Unit-I	Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, lattices as ordered sets, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras, Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and applications of switching circuits.				
Unit-II	Introduction: Alphabets, strings, and languages. Finite Automata and Regular Languages: Deterministic and non-deterministic finite automata, regular expressions, regular languages and their relationship with finite automata, pumping lemma and closure properties of regular languages.				
Unit-III	Context Free Grammars and Pushdown Automata: Context free grammars (CFG), parse trees, ambiguities in grammars and languages, pushdown automaton (PDA) and the language accepted by PDA, deterministic PDA, Non- deterministic PDA, properties of context free languages; normal forms, pumping lemma, closure properties, decision properties.				
Unit-IV	Turing Machines: Turing machine as a mode machine, variants of Turing machine and the enumerable and recursive languages, undecidalting problem, Post Correspondence Problems.	ir equivalence. dable problems	Undecidability: about Turing m	Recursively achines:	

- 1. B A. Davey and H. A. Priestley: Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.
- 2. Edgar G. Goodaire and Michael M. Parmenter: *Discrete Mathematics with Graph Theory*, (2nd Ed.), Pearson Education (Singapore) P.Ltd., Indian Reprint 2003.
- 3. Rudolf Lidl and Günter Pilz: *Applied Abstract Algebra*, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.
- 4. J. E. Hopcroft, R. Motwani and J. D. Ullman: *Introduction to Automata Theory, Languages, and Computation*, 2nd Ed., Addison-Wesley, 2001.
- 5. H.R. Lewis, C.H. Papadimitriou, C. Papadimitriou: *Elements of the Theory of Computation*, 2nd Ed., Prentice-Hall, NJ, 1997.
- 6. J.A. Anderson: Automata Theory with Modern Applications, Cambridge University Press, 2006.

Code	Title of Paper	Period per week	Internal Assessment	Semester Examination		
BHM-615 (DS-3) C2	Bio Mathematics	4L	40	60		
Unit-I	Continuous Population Models for	Single Species	1: Continuous	Growth Models,		
	Insect Outbreak Model: Spruce Budw	,	•	nalysis of Delay		
	Population Models: Periodic Solutions,	•				
Unit-II	Discrete Population Models for a S	_		•		
	Diseases, Harvesting a Single Natural Population, 7 Population Model with Age Distribution Introduction: Simple Models, Cobwebbing :A Graphical Procedure of Solution, Discrete Logistic-Stability, Periodic Solutions and Bifurcations					
Unit-III	Models for Interacting Populations					
	Type Model: Chaos: Discrete Delay Models. Fishery Management Model, Ecological					
	Implications and Caveats., Tumour Cell Growth, Predator-Prey Models: Lotka- Volterra					
	Systems, Complexity and Stability,					
Unit-IV	Some Realistic Models: Realistic Pre	•	•	•		
	Model with Limit Cycle, Periodic			•		
	Competition Models: Competitive Exclu	usion Principle,	Mutualism or Sy	mbiosis, Discrete		
	Growth Models for Interacting Population	ons				

- 1. J.D. Murray: Mathematical Biology: An Introduction. Springer Publication, 2002
- **2.** Johannes Müller, Christina Kuttler: *Methods and Models in Mathematical Biology: Deterministic and Stochastic Approaches* (Lecture Notes on Mathematical Modelling in the Life Sciences)
- **3.** Nicholas F. Britton: Essential Mathematical Biology, Ane Books Pvt. Ltd., 2007.

00 40	Title of Tuper	week	Assessment	Examination
BHM-616	Industrial Mathematics	4L	40	60
(DS-4) C1				
Unit-I	Medical Imaging and Inverse Problems: The and CT scan based on knowledge of calculumatrices.			•
Unit-II	Introduction to Inverse Problems: Why show inverse problems through pre-calculus, ca Geological anomalies in Earth interior for problems for Natural disaster) and Tomograp	alculus, Matric rom measurem	ces and differen	ntial equations.
Unit-III	X-ray introduction, X ray behaviour and Becconstruction) Lines in the place. Random T Phantom (Shepp-Logan Phatom-Mathemat Properties and examples.	ransform: Defi	nition and exam	ples, Linearity,
Unit-IV	CT Scan: Revision of properties of For applications of their properties in image reconstruction techniques abbrevi	construction. A	lgorithms of CT	scan machine.

Period per

Internal

Semester

Title of Paper

Books Recommended:

Code

- 1. Timothy G. Feeman: *The Mathematics for Medical Imaging: A beginner's guide*, Springer Under graduate Text in Mathematics and Technology, Springer 2010.
- 2. C.W. Groetsch: *Inverse problems. Activities for undergraduates*, the Mathematical Association of America, 1999.
- 3. Andreas Kirsch: An Introduction to the Mathematical Theory of Inverse Problems, 2nd Edn. Springer, 2011

Code	Title of Paper	Period per	Internal	Semester	
	•	week	Assessment	Examination	
BHM-616	Applications of Algebra	4L	40	60	
(DS-4) C2					
Unit-I	Balanced incomplete block designs (BIBD) BIBD, construction of BIBD from different residues, difference set families, construction	ce sets, constru n of BIBD from	ction of BIBD in finite fields.	using quadratic	
Unit-II	Coding Theory: introduction to error correcting codes, linear cods, generator and parity check matrices, minimum distance, Hamming Codes, decoding and cyclic codes. Symmetry groups and color patterns: review of permutation groups, groups of symmetry and action of a group on a set; colouring and colouring patterns. Polya theorem and				
Unit-III	matrices, circulant matrices, Vandermonde matrices, Hadamard matrices, permutation doubly stochastic matrices, Frobenius- König theorem, Birkhoff theorem. Positive Se				
Unit-IV	definite matrices: positive semi-definite matrices, square root of a positive semi-definite matrix, a pair of positive semi-definite matrices, and their simultaneous diagonalization. Symmetric matrices and quadratic forms: diagonalization of symmetric matrices, quadratic forms, constrained optimization, singular value decomposition, and applications to image processing and statistics. Applications of linear transformations: Fibonacci numbers, incidence models, and differential equations. Least squares methods: Approximate solutions of system of linear equations, approximate inverse of an $m \times n$ matrix, solving a matrix equation using its normal equation, finding functions that approximate data. Linear algorithms: LDU factorization, the row reduction algorithm and its inverse, backward and forward substitution, approximate inverse and projection algorithms.				

- 1. I. N. Herstein and D. J. Winter: *Primer on Linear Algebra*, Macmillan Publishing Company, New York, 1990.
- 2. S. R. Nagpaul and S. K. Jain: Topics in Applied Abstract Algebra, Thomson Brooks and Cole, Belmont, 2005.
- 3. Richard E. Klima, Neil Sigmon, Ernest Stitzinger: *Applications of Abstract Algebra with Maple*, CRC Press LLC, Boca Raton, 2000.
- 4. David C. Lay: Linear Algebra and its Applications. 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 5. Fuzhen Zhang: *Matrix theory*, Springer-Verlag New York, Inc., New York, 1999.